Affiliation:
1. Museum of Comparative Zoology, Harvard University, 26 Oxford Street,Cambridge, MA 02138, USA
Abstract
SUMMARYDorsal and anal fins are median fins located above and below the centre of mass of fishes, each having a moment arm relative to the longitudinal axis. Understanding the kinematics of dorsal and anal fins may elucidate how these fins are used in concert to maintain and change fish body position and yet little is known about the functions of these fins. Using three synchronized high-speed cameras (500 frames s–1) we studied the three-dimensional kinematics of dorsal and anal fins during steady swimming(0.5–2.5 TL s–1, where TL=total length) and during slow speed maneuvers (0.5 TLs–1). By digitizing points along every other fin ray in the soft-rayed portion of the fins we were able to determine not only the movement of the fin surface but also the curvature of individual fin rays and the resulting fin surface shape. We found that dorsal and anal fins begin oscillating, in phase, at steady swimming speeds above 1.0 TLs–1 and that maximum lateral displacement of the trailing edge of the fins as well as fin area increase with increasing steady swimming speed. Differences in area, lateral displacement and moment arm between the dorsal and anal fin suggest that dorsal and anal fins produce balancing torques during steady swimming. During maneuvers, fin area is maximized and mean lateral excursion of both fins is greater than during steady swimming,with large variation among maneuvers. Fin surface shape changes dramatically during maneuvers. At any given point in time the spanwise (base to tip)curvature along fin rays can differ between adjacent rays, suggesting that fish have a high level of control over fin surface shape. Also, during maneuvers the whole surface of both dorsal and anal fins can be bent without individual fin rays exhibiting significant curvature.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference41 articles.
1. Arreola, V. I. and Westneat, M. W. (1996). Mechanics of propulsion by multiple fins: Kinematics of aquatic locomotion in the burrfish. Proc. R. Soc. Lond. B263,1689-1696.
2. Blake, R. W. (1976). On seahorse locomotion. J. Mar. Biol. Assn UK56,939-949.
3. Blake, R. W. (1977). On ostraciiform locomotion. J. Mar. Biol. Assn UK57,1047-1055.
4. Blake, R. W. (1980). Undulatory median fin propulsion of two teleosts with different modes of life. Can. J. Zool.58,2116-2119.
5. Blake, R. W. (1983a). Functional design and burst-and-coast swimming in fishes. Can. J. Zool.61,2491-2494.
Cited by
161 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献