Abstract
A simple fluid flow model, based on momentum considerations, is employed to calculate the hydromechnanical efficiency of the undulatory dorsal fin propeller of the electric fish (Gymnarchus niloticus) and the seahorse (Hippocampus hudsonius). The undulatory fins of G. niloticus and H. hudsonius are representative of two extreme kinematic styles. The dorsal fin of G. niloticus is characterized by waveforms which are propagated at low frequency and a leading edge which "sweeps out" a large area. In contrast, the leading edge of the dorsal fin of H. hudsonius sweeps out a comparatively small area and waveforms pass down the fin at a high frequency. It is shown that the propulsive efficiency of the dorsal fin of G. niloticus can be up to twice that of H. hudsonius at similar swimming speeds. Possible explanations for the evolution of the two kinematic modes are discussed in relation to the mode of life of the animals.
Publisher
Canadian Science Publishing
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献