Author:
Nguyen Van Dong, ,Vo Dinh Quoc,Duong Van Tu,Nguyen Huy Hung,Nguyen Tan Tien, , ,
Abstract
<abstract>
<p>This article proposes a locomotion controller inspired by black Knifefish for undulating elongated fin robot. The proposed controller is built by a modified CPG network using sixteen coupled Hopf oscillators with the feedback of the angle of each fin-ray. The convergence rate of the modified CPG network is optimized by a reinforcement learning algorithm. By employing the proposed controller, the undulating elongated fin robot can realize swimming pattern transformations naturally. Additionally, the proposed controller enables the configuration of the swimming pattern parameters known as the amplitude envelope, the oscillatory frequency to perform various swimming patterns. The implementation processing of the reinforcement learning-based optimization is discussed. The simulation and experimental results show the capability and effectiveness of the proposed controller through the performance of several swimming patterns in the varying oscillatory frequency and the amplitude envelope of each fin-ray.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献