DETECTION OF HUMAN STRESS USING SHORT-TERM ECG AND HRV SIGNALS

Author:

KARTHIKEYAN P.1,MURUGAPPAN M.1,YAACOB S.1

Affiliation:

1. School of Mechatronics Engineering, Universiti Malaysia Perlis, UluPauh, 02600, Arau, Perlis, Malaysia

Abstract

This paper introduces a method for resolving the problem of human stress detection through short-term (less than 5 min) electrocardiogram (ECG) and heart rate variability (HRV) signals. The explored methodology helps to improve the stress detection rate and reliability through multiple evidences originated in same sensor. In this work, stress-inducing protocol, data acquisition, preprocessing, feature extraction and classification are the major steps involved to detect the stress. In total, 60 subjects (30 males and 30 females) participated in the Stroop color word-based stress-inducing task and ECG signal was acquired simultaneously. The wavelet denoising algorithm was applied to remove high frequency, baseline wander and power line noises. Discrete wavelet transform (DWT)-based heart rate (HR) detection algorithm is used for deriving HRV signal from the preprocessed ECG signal. The ectopic beat removal method is employed to eliminate the ectopic beat and noise peaks in the HRV signal. In order to detect the stress, the issue of uneven sampling with the HRV signal has been successfully rectified using the Lomb-Scargle periodogram (LSP). The application of LSP in short-term HRV signals (32 s), uneven sampling issue, and power spectral information issue has been rectified and the trustworthiness of the short-term HRV signal has been proved by hypothesis as well as experimental results. Theoretical analysis suggested that a minimum 25 s of online or offline ECG data is required to analyze the autonomous nervous system (ANS) activity related to stress. In addition to the HRV signal, ECG-based stress assessment has been proposed to detect the stress through optimum features using fast Fourier transform (FFT). Various features extracted from the ECG and HRV signal have been classified into normal and stress using PNN and kNN classifiers with different smoothing factor and k values. The experimental results indicate that the proposed methodology for short-term ECG and HRV signal can achieve the overall average classification accuracy of 91.66% and 94.66% in the subject-independent mode.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3