Affiliation:
1. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
2. Department of Radiation Oncology, Samsung Medical Center, Seoul 06355, Republic of Korea
3. School of Medicine, Sungkyunkwan University, Seoul 06355, Republic of Korea
Abstract
This study aimed to predict stress in patients using artificial intelligence (AI) from biological signals and verify the effect of stress on respiratory irregularity. We measured 123 cases in 41 patients and calculated stress scores with seven stress-related features derived from heart-rate variability. The distribution and trends of stress scores across the treatment period were analyzed. Before-treatment information was used to predict the stress features during treatment. AI models included both non-pretrained (decision tree, random forest, support vector machine, long short-term memory (LSTM), and transformer) and pretrained (ChatGPT) models. Performance was evaluated using 10-fold cross-validation, exact match ratio, accuracy, recall, precision, and F1 score. Respiratory irregularities were calculated in phase and amplitude and analyzed for correlation with stress score. Over 90% of the patients experienced stress during radiation therapy. LSTM and prompt engineering GPT4.0 had the highest accuracy (feature classification, LSTM: 0.703, GPT4.0: 0.659; stress classification, LSTM: 0.846, GPT4.0: 0.769). A 10% increase in stress score was associated with a 0.286 higher phase irregularity (p < 0.025). Our research pioneers the use of AI and biological signals for stress prediction in patients undergoing radiation therapy, potentially identifying those needing psychological support and suggesting methods to improve radiotherapy effectiveness through stress management.
Funder
National Research Foundation of Korea