Predicting stress levels using physiological data: Real-time stress prediction models utilizing wearable devices

Author:

Lazarou Evgenia,Exarchos Themis P.

Abstract

<abstract> <p>Stress has emerged as a prominent and multifaceted health concern in contemporary society, manifesting detrimental effects on individuals' physical and mental health and well-being. The ability to accurately predict stress levels in real time holds significant promise for facilitating timely interventions and personalized stress management strategies. The increasing incidence of stress-related physical and mental health issues highlights the importance of thoroughly understanding stress prediction mechanisms. Given that stress is a contributing factor to a wide array of mental and physical health problems, objectively assessing stress is crucial for behavioral and physiological studies. While numerous studies have assessed stress levels in controlled environments, the objective evaluation of stress in everyday settings still needs to be explored, primarily due to contextual factors and limitations in self-report adherence. This short review explored the emerging field of real-time stress prediction, focusing on utilizing physiological data collected by wearable devices. Stress was examined from a comprehensive standpoint, acknowledging its effects on both physical and mental well-being. The review synthesized existing research on the development and application of stress prediction models, underscoring advancements, challenges, and future directions in this rapidly evolving domain. Emphasis was placed on examining and critically evaluating the existing research and literature on stress prediction, physiological data analysis, and wearable devices for stress monitoring. The synthesis of findings aimed to contribute to a better understanding of the potential of wearable technology in objectively assessing and predicting stress levels in real time, thereby informing the design of effective interventions and personalized stress management approaches.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3