A FEATURE SELECTION-BASED ALGORITHM FOR DETECTION OF ATRIAL FIBRILLATION USING SHORT-TERM ECG

Author:

ZHU JUNJIANG1,PU YU1,HUANG HAO1,WANG YUXUAN1,LI XIAOLU1,YAN TIANHONG1

Affiliation:

1. College of Mechanical & Electronic Engineering, China Jiliang University, Hangzhou 310018, P. R. China

Abstract

In the presence of premature atrial contraction (PAC), premature ventricular contraction (PVC) or other ectopic beats, RR intervals (RRIs) may be disturbed, which results in other types of heart disease being misdiagnosed as atrial fibrillation (AF). In this study, a low-complexity AF detection method based on short ECG is proposed, which includes RRIs modification and feature selection. The extracted RRIs are used to determine whether the potential RRI interference exists and to modify it. Next, based on the modified RRIs, the features are evaluated and selected by the methods of correlation criterion, Fisher criterion, and minimum redundancy maximum relevance criterion. Finally, filtered features are classified by the artificial neural network (ANN). The algorithm is validated in a test set including 2332 AF, 313 normal (NOR), 239 atrioventricular block (IAVB), 81 left bundle branch block (LBBB), 624 right bundle branch block (RBBB), 426 PAC and 564 PVC. Compared with the previous detection method of AF based on the RRIs, the proposed method achieved an overall sensitivity of 94.04% and an overall specificity of 86.74%. The specificity of the test set containing only AF and NOR is up to 99.04%. Meanwhile, the overall false-positive rate (FPR) of PAC and PVC can be reduced by 9.19%. While ensuring accuracy, this method effectively reduces the probability of misdiagnosis of PVC and PAC as AF. It is an automatic detection method of AF suitable for inter-patient clinical short-term ECG.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3