Affiliation:
1. College of Mechanical & Electronic Engineering, China Jiliang University, Hangzhou 310018, P. R. China
Abstract
In the presence of premature atrial contraction (PAC), premature ventricular contraction (PVC) or other ectopic beats, RR intervals (RRIs) may be disturbed, which results in other types of heart disease being misdiagnosed as atrial fibrillation (AF). In this study, a low-complexity AF detection method based on short ECG is proposed, which includes RRIs modification and feature selection. The extracted RRIs are used to determine whether the potential RRI interference exists and to modify it. Next, based on the modified RRIs, the features are evaluated and selected by the methods of correlation criterion, Fisher criterion, and minimum redundancy maximum relevance criterion. Finally, filtered features are classified by the artificial neural network (ANN). The algorithm is validated in a test set including 2332 AF, 313 normal (NOR), 239 atrioventricular block (IAVB), 81 left bundle branch block (LBBB), 624 right bundle branch block (RBBB), 426 PAC and 564 PVC. Compared with the previous detection method of AF based on the RRIs, the proposed method achieved an overall sensitivity of 94.04% and an overall specificity of 86.74%. The specificity of the test set containing only AF and NOR is up to 99.04%. Meanwhile, the overall false-positive rate (FPR) of PAC and PVC can be reduced by 9.19%. While ensuring accuracy, this method effectively reduces the probability of misdiagnosis of PVC and PAC as AF. It is an automatic detection method of AF suitable for inter-patient clinical short-term ECG.
Publisher
World Scientific Pub Co Pte Lt
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献