Using Minimum Redundancy Maximum Relevance Algorithm to Select Minimal Sets of Heart Rate Variability Parameters for Atrial Fibrillation Detection

Author:

Buś SzymonORCID,Jędrzejewski KonradORCID,Guzik PrzemysławORCID

Abstract

Heart rate is quite regular during sinus (normal) rhythm (SR) originating from the sinus node. In contrast, heart rate is usually irregular during atrial fibrillation (AF). Complete atrioventricular block with an escape rhythm, ventricular pacing, or ventricular tachycardia are the most common exceptions when heart rate may be regular in AF. Heart rate variability (HRV) is the variation in the duration of consecutive cardiac cycles (RR intervals). We investigated the utility of HRV parameters for automated detection of AF with machine learning (ML) classifiers. The minimum redundancy maximum relevance (MRMR) algorithm, one of the most effective algorithms for feature selection, helped select the HRV parameters (including five original), best suited for distinguishing AF from SR in a database of over 53,000 60 s separate electrocardiogram (ECG) segments cut from longer (up to 24 h) ECG recordings. HRV parameters entered the ML-based classifiers as features. Seven different, commonly used classifiers were trained with one to six HRV-based features with the highest scores resulting from the MRMR algorithm and tested using the 5-fold cross-validation and blindfold validation. The best ML classifier in the blindfold validation achieved an accuracy of 97.2% and diagnostic odds ratio of 1566. From all studied HRV features, the top three HRV parameters distinguishing AF from SR were: the percentage of successive RR intervals differing by at least 50 ms (pRR50), the ratio of standard deviations of points along and across the identity line of the Poincare plots, respectively (SD2/SD1), and coefficient of variation—standard deviation of RR intervals divided by their mean duration (CV). The proposed methodology and the presented results of the selection of HRV parameters have the potential to develop practical solutions and devices for automatic AF detection with minimal sets of simple HRV parameters. Using straightforward ML classifiers and the extremely small sets of simple HRV features, always with pRR50 included, the differentiation of AF from sinus rhythms in the 60 s ECGs is very effective.

Publisher

MDPI AG

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3