ANALYSIS OF CARDIOVASCULAR, CARDIORESPIRATORY, AND VASCULO-RESPIRATORY SIGNALS USING DIFFERENT MACHINE LEARNING TECHNIQUES

Author:

Singh Kirti1ORCID,Saini Indu2,Sood Neetu2

Affiliation:

1. Department of Electronics and Communication, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab 144001, India

2. Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab 144001, India

Abstract

Many physiological signals such as heart rate (HR), blood pressure (BP), and respiration (RESP) affect each other, and the inter-relation within and between these signals can be linear or nonlinear. Therefore, this paper’s main aim is to extract the relevant features using the information domain coupling technique based on conditional transfer entropy to detect the nonlinearity and coupling changes between the physiological signals and to classify the database using various machine learning classifiers to study the aging changes in the contribution of HR, BP, and RESP. In the proposed work, the physiological signals, i.e. HR, BP, and RESP, were pre-processed using various filtering methods, then features of physiological signals were extracted using linear and nonlinear techniques. After the pre-processing and extraction of features, the extracted features are classified using machine learning classifiers to classify the physiological signal database to study the aging changes in the contribution of HR, BP, and RESP. The data has been taken from the standard Fantasia database of healthy young and old subjects and self-recorded data of healthy young and old subjects for this study. Naive Bayes (NB), Support vector machine (SVM), K-Nearest Neighbor (KNN), Logistic Regression (LR), and Artificial Neural Network (ANN) were trained using five-fold cross-validation on the physiological dataset. It is concluded from the results that by adding the coupling features, the efficiency of the final prediction of the classifier increased from [Formula: see text]% to [Formula: see text]% obtained by LR, [Formula: see text]% to [Formula: see text]% obtained by SVM, [Formula: see text]% to [Formula: see text]% obtained by KNN, [Formula: see text]% to [Formula: see text]% obtained by NB, and [Formula: see text]% to [Formula: see text]% obtained by ANN. The ANN performs well when provided with the coupling features, gives a maximum accuracy of [Formula: see text]% and very high sensitivity of [Formula: see text]% and specificity of [Formula: see text]%, and takes much less computational time, when compared to other machine learning algorithms on same length of database.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence for Healty Aging : A Literature Review;2023 10th International Conference on ICT for Smart Society (ICISS);2023-09-06

2. A framework based on the information domain to measure coupling changes in electrophysiological signals;Biomedical Physics & Engineering Express;2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3