CASE-BASED SOFTWARE QUALITY PREDICTION

Author:

GANESAN K.1,KHOSHGOFTAAR TAGHI M.1,ALLEN EDWARD B.1

Affiliation:

1. Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA

Abstract

Highly reliable software is becoming an essential ingredient in many systems. However, assuring reliability often entails time-consuming costly development processes. One cost-effective strategy is to target reliability-enhancement activities to those modules that are likely to have the most problems. Software quality prediction models can predict the number of faults expected in each module early enough for reliability enhancement to be effective. This paper introduces a case-based reasoning technique for the prediction of software quality factors. Case-based reasoning is a technique that seeks to answer new problems by identifying similar "cases" from the past. A case-based reasoning system can function as a software quality prediction model. To our knowledge, this study is the first to use case-based reasoning systems for predicting quantitative measures of software quality. A case study applied case-based reasoning to software quality modeling of a family of full-scale industrial software systems. The case-based reasoning system's accuracy was much better than a corresponding multiple linear regression model in predicting the number of design faults. When predicting faults in code, its accuracy was significantly better than a corresponding multiple linear regression model for two of three test data sets and statistically equivalent for the third.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constructor Development: Predicting Object Communication Errors;2023 IEEE International Conference on Emerging Trends in Engineering, Sciences and Technology (ICES&T);2023-01-09

2. Measuring the Bytecode Quality of Object-Oriented Software;Soft Computing: Theories and Applications;2022

3. Inheritance metrics feats in unsupervised learning to classify unlabeled datasets and clusters in fault prediction;PeerJ Computer Science;2021-10-29

4. Comparative analysis of software fault prediction using various categories of classifiers;International Journal of System Assurance Engineering and Management;2021-05-10

5. Case-based reasoning for safety assessment of critical software;Intelligent Decision Technologies;2021-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3