Case-based reasoning for safety assessment of critical software

Author:

Hadj-Mabrouk Habib

Abstract

The commissioning of a new guided or automated rail transport system requires an in-depth analysis of all the methods, techniques, procedures, regulations and safety standards to ensure that the risk level of the future system does not present any danger likely to jeopardize the safety of travelers. Among these numerous safety methods implemented to guarantee safety at the system, automation, hardware and software level, there is a method called “Software Errors and Effects Analysis (SEEA)” whose objective is to determine the nature and the severity of the consequences of software failures, to propose measures to detect errors and finally to improve the robustness of the software. In order to strengthen and rationalize this SEEA method, we have agreed to use machine learning techniques and in particular Case-Based Reasoning (CBR) in order to assist the certification experts in their difficult task of assessing completeness and the consistency of safety of critical software equipment. The main objective consists, from a set of data in the form of accident scenarios or incidents experienced on rail transport systems (experience feedback), to exploit by automatic learning this mass of data to stimulate the imagination of certification experts and assist them in their crucial task of researching scenarios of potential accidents not taken into account during the design phase of new critical software. The originality of the tool developed lies not only in its ability to model, capitalize, sustain and disseminate SEEA expertise, but it represents the first research on the application of CBR to SEEA. In fact, in the field of rail transport, there are currently no software tools for assisting SEEAs based on machine learning techniques and in particular based on CBR.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approach to Assist in the Discovery of Railway Accident Scenarios Based on Supervised Learning;Energy, Environment, and Sustainability;2023

2. Decision Support Approach for Assessing of Rail Transport;Advances in Logistics, Operations, and Management Science;2021

3. Human Factors Affecting Railway Safety;Advances in Logistics, Operations, and Management Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3