Inheritance metrics feats in unsupervised learning to classify unlabeled datasets and clusters in fault prediction

Author:

Aziz Syed Rashid1ORCID,Khan Tamim Ahmed1ORCID,Nadeem Aamer2ORCID

Affiliation:

1. Department of Software Engineering, Bahria University, Islamabad, Pakistan

2. Department of Software Engineering, Capital University of Science & Technology, Islamabad, Pakistan

Abstract

Fault prediction is a necessity to deliver high-quality software. The absence of training data and mechanism to labeling a cluster faulty or fault-free is a topic of concern in software fault prediction (SFP). Inheritance is an important feature of object-oriented development, and its metrics measure the complexity, depth, and breadth of software. In this paper, we aim to experimentally validate how much inheritance metrics are helpful to classify unlabeled data sets besides conceiving a novel mechanism to label a cluster as faulty or fault-free. We have collected ten public data sets that have inheritance and C&K metrics. Then, these base datasets are further split into two datasets labeled as C&K with inheritance and the C&K dataset for evaluation. K-means clustering is applied, Euclidean formula to compute distances and then label clusters through the average mechanism. Finally, TPR, Recall, Precision, F1 measures, and ROC are computed to measure performance which showed an adequate impact of inheritance metrics in SFP specifically classifying unlabeled datasets and correct classification of instances. The experiment also reveals that the average mechanism is suitable to label clusters in SFP. The quality assurance practitioners can benefit from the utilization of metrics associated with inheritance for labeling datasets and clusters.

Publisher

PeerJ

Subject

General Computer Science

Reference76 articles.

1. Fault prediction by utilizing self-organizing map and threshold;Abaei,2013

2. Maintainability based risk assessment in adaptive maintenance context;Abdelmoez,2006

3. Quantifying software architectures: an analysis of change propagation probabilities;Abdelmoez,2005

4. Chidamber and kemerer object-oriented metrics suite;Aivosto,2018

5. Software defect prediction using heterogeneous ensemble classification based on segmented patterns;Alsawalqah;Applied Sciences,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3