KCC Analysis of a One-Dimensional System During Catastrophic Shift of the Hill Function: Douglas Tensor in the Nonequilibrium Region

Author:

Yamasaki Kazuhito1ORCID,Yajima Takahiro2

Affiliation:

1. Department of Planetology, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan

2. Department of Mechanical Systems Engineering, Faculty of Engineering, Utsunomiya University, Utsunomiya, 321-8585, Japan

Abstract

This paper considers the stability of a one-dimensional system during a catastrophic shift described by the Hill function. Because the shifting process goes through a nonequilibrium region, we applied the theory of Kosambi, Cartan, and Chern (KCC) to analyze the stability of this region based on the differential geometrical invariants of the system. Our results show that the Douglas tensor, one of the invariants in the KCC theory, affects the robustness of the trajectory during a catastrophic shift. In this analysis, the forward and backward shifts can have different Jacobi stability structures in the nonequilibrium region. Moreover, the bifurcation curve of the catastrophic shift can be interpreted geometrically, as the solution curve where the nonlinear connection and the deviation curvature become zero. KCC analysis also shows that even if the catastrophic pattern itself is similar, the stability structure in the nonequilibrium region is different in some cases, from the viewpoint of the Douglas tensor.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3