Elementary Catastrophe’s Chaos in One-Dimensional Discrete Systems Based on Nonlinear Connections and Deviation Curvature Statistics

Author:

Yamasaki Kazuhito1ORCID

Affiliation:

1. Department of Planetology, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan

Abstract

This study shows, by means of numerical analysis, that the characteristics of discrete dynamical systems, in which chaos and catastrophe coexist, are closely related to the geometric statistics in Finsler geometry. The two geometric statistics introduced are nonlinear connections information, denoted as [Formula: see text], and the mean deviation curvature, denoted as [Formula: see text]. The quantity [Formula: see text] can be used to determine the occurrence of chaos in terms of nonequilibrium stability. The resulting chaos is characterized by [Formula: see text] in terms of the trajectory’s robustness, which is related to the localization or globalization of chaos. The characteristics of catastrophe-induced chaos are clearly visualized through the contour topography of [Formula: see text], in which an abrupt change is represented by cliff topography (i.e. a line of critical points); initial dependence is reflected in the reversibility of topographic patterns. On overlaying the contour topography with the singularity pattern, it is evident that chaos does not arise around the singular point. Furthermore, the extensive development of cusp and butterfly chaos demands information on the nonlinear connections within the singularity pattern. The asymmetry in swallowtail chaos is less distinguishable in an equilibrated state, but becomes more evident when the system is in a state of nonequilibrium. In many analyses, chaos and catastrophe are examined separately. However, these results demonstrate that when both are present, the two have a complex relationship constrained by the singularity.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3