Application of Jacobi stability analysis to a first-order dynamical system: relation between nonlinearizability of one-dimensional differential equation and Jacobi stable region

Author:

Hirakui YumaORCID,Yajima TakahiroORCID

Abstract

Abstract In this study, we discuss Jacobi stability in equilibrium and nonequilibrium regions for a first-order one-dimensional system using deviation curvatures. The deviation curvature is calculated using the Kosambi-Cartan-Chern theory, which is applied to second-order differential equations. The deviation curvatures of the first-order one-dimensional differential equations are calculated using two methods as follows. Method 1 is only differentiating both sides of the equation. Additionally, Method 2 is differentiating both sides of the equation and then substituting the original equation into the second-order system. From the general form of the deviation curvatures calculated using each method, the analytical results are obtained as (A), (B), and (C). (A) Equilibrium points are Jacobi unstable for both methods; however, the type of equilibrium points is different. In Method 1, the equilibrium point is a nonisolated fixed point. Conversely, the equilibrium point is a saddle point in Method 2. (B) When there is a Jacobi stable region, the size of the Jacobi stable region in the Method 1 is different from that in Method 2. Especially, the Jacobi stable region in Method 1 is always larger than that in Method 2. (C) When there are multiple equilibrium points, the Jacobi stable region always exists in the nonequilibrium region located between the equilibrium points. These results are confirmed numerically using specific dynamical systems, which are given by the logistic equation and its evolution equation with the Hill function. From the results of (A) and (B), differences in types of equilibrium points affect the size of the Jacobi stable region. From (C), the Jacobi stable regions appear as nonequilibrium regions where the equations cannot be linearized.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Reference32 articles.

1. Parallelism and path-spaces;Kosambi;Math. Z.,1933

2. Observations sur le mémoire précédent (Extrait d’une lettre á M. D. D. Kosambi);Cartan;Math. Z.,1933

3. Sur la géométrie d’un système d’équations différentielles du second ordre;Chern;Bull. Sci. Math.,1939

4. Systems biology and deviation curvature tensor;Sabău;Nonlinear Anal. Real World Appl.,2005

5. Some remarks on Jacobi stability;Sabau;Nonlinear Anal. Theory Methods Appl.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3