Affiliation:
1. National School of Engineers of Tunis, University of Tunis El Manar, BP. 37, Le Belvédère, 1002 Tunis, Tunisia
Abstract
Recently, passive and semi-passive dynamic walking has been noticed in researches of biped walking robots. Such biped robots are well-known that they demonstrate only a period-doubling route to chaos while walking down sloped surfaces. In previous researches, such route was shown with respect to a continuous change in some parameter of the biped robot. In this paper, two biped robots are introduced: the passive compass-gait biped robot and the semi-passive torso-driven biped robot. The period-doubling scenario route to chaos is revisited for the first biped as the ground slope changes. Furthermore, we will show through bifurcation diagram that the torso-driven biped exhibits also such route to chaos when the slope angle is varied. For such biped, a modified semi-passive control law is introduced in order to stabilize the torso at some desired position. In this work, we will show through bifurcation diagrams that the dynamic walking of the two biped robots reveals two other routes to chaos namely the intermittency route and the interior crisis route. We will stress that the intermittency is generated via a saddle-node bifurcation where an unstable periodic orbit is created. We will highlight that such event takes place for a Type-I intermittency. However, we will emphasize that the interior crisis event occurs when a collision of the unstable periodic orbit with a weak chaotic attractor happens giving rise to a strong chaotic attractor. In addition, we will explore the intermittent step series induced by the interior crisis and also by the Type-I intermittency. In this study, our analysis on chaos and the routes to chaos will be based, beside bifurcation diagrams, on Lyapunov exponents and fractal (Lyapunov) dimension. These two tools are plotted in the parameter space to classify attractors observed in bifurcation diagrams.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献