Affiliation:
1. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, P. R. China
2. School of Mathematical Science, Huaiyin Normal University, Huaian 223300, P. R. China
3. School of Science, Nantong University, Nantong 226007, P. R. China
Abstract
This paper reports novel routes to complex bursting patterns based on a forced cubic map, in which boundary-crisis-induced novel bursting patterns are investigated. Typically, the cubic map exhibits stable upper and lower branches of fixed points, which may evolve into chaos in opposite parameter directions by a cascade of period-doubling bifurcations. We show that the chaotic attractors on the stable branches may suddenly disappear by boundary crisis, thus leading to fast transitions from chaos to other attractors and giving rise to switchings between the stable branches of solutions of the cubic map. In particular, the attractors that the trajectory switches to by boundary crisis can be fixed points, periodic orbits and chaos, dependent on parameter values of the cubic map, and this helps us to reveal three general types of boundary-crisis-induced bursting, i.e. bursting of chaos-point type, bursting of chaos-cycle type and bursting of chaos-chaos type. Moreover, each bursting type may contain various bursting patterns. For bursting of chaos-cycle type, we see rich bursting patterns, e.g. chaos-period-2 bursting, chaos-period-4 bursting, chaos-period-8 bursting, etc. Our results enrich the possible routes to complex bursting patterns as well as the underlying mechanisms of complex bursting patterns.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献