Reliability and robustness of oscillations in some slow-fast chaotic systems

Author:

Jaquette Jonathan123ORCID,Kedia Sonal34ORCID,Sander Evelyn5ORCID,Touboul Jonathan D.23ORCID

Affiliation:

1. Department of Mathematics and Statistics, Boston University 1 , Boston, Massachusetts 02215, USA

2. Department of Mathematics, Brandeis University 2 , Waltham, Massachusetts 02453, USA

3. Volen National Center for Complex Systems, Brandeis University 3 , Waltham, Massachusetts 02453, USA

4. Biology Department, Brandeis University 4 , Waltham, Massachusetts 02453, USA

5. Department of Mathematical Sciences, George Mason University 5 , Fairfax, Virginia 22030, USA

Abstract

A variety of nonlinear models of biological systems generate complex chaotic behaviors that contrast with biological homeostasis, the observation that many biological systems prove remarkably robust in the face of changing external or internal conditions. Motivated by the subtle dynamics of cell activity in a crustacean central pattern generator (CPG), this paper proposes a refinement of the notion of chaos that reconciles homeostasis and chaos in systems with multiple timescales. We show that systems displaying relaxation cycles while going through chaotic attractors generate chaotic dynamics that are regular at macroscopic timescales and are, thus, consistent with physiological function. We further show that this relative regularity may break down through global bifurcations of chaotic attractors such as crises, beyond which the system may also generate erratic activity at slow timescales. We analyze these phenomena in detail in the chaotic Rulkov map, a classical neuron model known to exhibit a variety of chaotic spike patterns. This leads us to propose that the passage of slow relaxation cycles through a chaotic attractor crisis is a robust, general mechanism for the transition between such dynamics. We validate this numerically in three other models: a simple model of the crustacean CPG neural network, a discrete cubic map, and a continuous flow.

Funder

National Institute of Mental Health

Simons Foundation

Division of Mathematical Sciences

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bifurcations and mixed mode oscillations in a bi-stable plasma model with slow parametric excitation;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-07-01

2. Analysis of dynamics of a map-based neuron model via Lorenz maps;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3