MAP BASED MODELS IN NEURODYNAMICS

Author:

COURBAGE M.1,NEKORKIN V. I.2

Affiliation:

1. Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris 7- Denis Diderot, Bâtiment Condorcet, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

2. Institute of Applied Physics of RAS 603950, 46 Ulyanova Str., Nizhny Novgorod, Russia

Abstract

This tutorial reviews a new important class of mathematical phenomenological models of neural activity generated by iterative dynamical systems: the so-called map-based systems. We focus on 1-D and 2-D maps for the replication of many features of the neural activity of a single neuron. It was shown that such systems can reproduce the basic activity modes such as spiking, bursting, chaotic spiking-bursting, subthreshold oscillations, tonic and phasic spiking, normal excitability, etc. of the real biological neurons. We emphasize on the representation of chaotic spiking-bursting oscillations by chaotic attractors of 2-D models. We also explain the dynamical mechanism of formation of such attractors and transition from one mode to another. We briefly present some synchronization mehanisms of chaotic spiking-bursting activity for two coupled neurons described by 1-D maps.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model;Chaos, Solitons & Fractals;2024-09

2. Unfolding the distribution of periodicity regions and diversity of chaotic attractors in the Chialvo neuron map;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-08-01

3. Optimal input reverberation and homeostatic self-organization toward the edge of synchronization;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-05-01

4. An absorbing set for the Chialvo map;Communications in Nonlinear Science and Numerical Simulation;2024-05

5. Analysis of dynamics of a map-based neuron model via Lorenz maps;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3