Evaluating Feature Selection Methods for Network Intrusion Detection with Kyoto Data

Author:

Najafabadi Maryam M.1,Khoshgoftaar Taghi M.1,Seliya Naeem1

Affiliation:

1. Florida Atlantic University, Boca Raton, Florida, USA

Abstract

Considering the large quantity of the data flowing through the network routers, there is a very high demand to detect malicious and unhealthy network traffic to provide network users with reliable network operation and security of their information. Predictive models should be built to identify whether a network traffic record is healthy or malicious. To build such models, machine learning methods have started to be used for the task of network intrusion detection. Such predictive models must monitor and analyze a large amount of network data in a reasonable amount of time (usually real time). To do so, they cannot always process the whole data and there is a need for data reduction methods, which reduce the amount of data that needs to be processed. Feature selection is one of the data reduction methods that can be used to decrease the process time. It is important to understand which features are most relevant to determining if a network traffic record is malicious and avoid using the whole feature set to make the processing time more efficient. Also it is important that the simple model built from the reduced feature set be as effective as a model which uses all the features. Considering these facts, feature selection is a very important pre-processing step in the detection of network attacks. The goal is to remove irrelevant and redundant features in order to increase the overall effectiveness of an intrusion detection system without negatively affecting the classification performance. Most of the previous feature selection studies in the area of intrusion detection have been applied on the KDD 99 dataset. As KDD 99 is an outdated dataset, in this paper, we compare different feature selection methods on a relatively new dataset, called Kyoto 2006+. There is no comprehensive comparison of different feature selection approaches for this dataset. In the present work, we study four filter-based feature selection methods which are chosen from two categories for the application of network intrusion detection. Three filter-based feature rankers and one filter-based subset evaluation technique are compared together along with the null case which applies no feature selection. We also apply statistical analysis to determine whether performance differences between these feature selection methods are significant or not. We find that among all the feature selection methods, Signal-to-Noise (S2N) gives the best performance results. It also outperforms no feature selection approach in all the experiments.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3