Abstract
AbstractThe recent years have seen a proliferation of Internet of Things (IoT) devices and an associated security risk from an increasing volume of malicious traffic worldwide. For this reason, datasets such as Bot-IoT were created to train machine learning classifiers to identify attack traffic in IoT networks. In this study, we build predictive models with Bot-IoT to detect attacks represented by dataset instances from the Information Theft category, as well as dataset instances from the data exfiltration and keylogging subcategories. Our contribution is centered on the evaluation of ensemble feature selection techniques (FSTs) on classification performance for these specific attack instances. A group or ensemble of FSTs will often perform better than the best individual technique. The classifiers that we use are a diverse set of four ensemble learners (Light GBM, CatBoost, XGBoost, and random forest (RF)) and four non-ensemble learners (logistic regression (LR), decision tree (DT), Naive Bayes (NB), and a multi-layer perceptron (MLP)). The metrics used for evaluating classification performance are area under the receiver operating characteristic curve (AUC) and Area Under the precision-recall curve (AUPRC). For the most part, we determined that our ensemble FSTs do not affect classification performance but are beneficial because feature reduction eases computational burden and provides insight through improved data visualization.
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献