Numerical Feature Selection and Hyperbolic Tangent Feature Scaling in Machine Learning-Based Detection of Anomalies in the Computer Network Behavior

Author:

Protić Danijela1,Stanković Miomir2,Prodanović Radomir1ORCID,Vulić Ivan3ORCID,Stojanović Goran M.4ORCID,Simić Mitar4ORCID,Ostojić Gordana4ORCID,Stankovski Stevan4ORCID

Affiliation:

1. Center for Applied Mathematics and Electronics, 11000 Belgrade, Serbia

2. Mathematical Institute of SASA, 11000 Belgrade, Serbia

3. Military Academy, University of Defense, 11042 Belgrade, Serbia

4. Faculty of Technical Science, University of Novi Sad, 21000 Novi Sad, Serbia

Abstract

Anomaly-based intrusion detection systems identify the computer network behavior which deviates from the statistical model of typical network behavior. Binary classifiers based on supervised machine learning are very accurate at classifying network data into two categories: normal traffic and anomalous activity. Most problems with supervised learning are related to the large amount of data required to train the classifiers. Feature selection can be used to reduce datasets. The goal of feature selection is to select a subset of relevant input features to optimize the evaluation and improve performance of a given classifier. Feature scaling normalizes all features to the same range, preventing the large size of features from affecting classification models or other features. The most commonly used supervised machine learning models, including decision trees, support vector machine, k-nearest neighbors, weighted k-nearest neighbors and feedforward neural network, can all be improved by using feature selection and feature scaling. This paper introduces a new feature scaling technique based on a hyperbolic tangent function and damping strategy of the Levenberg–Marquardt algorithm.

Funder

Horizon Europe Framework Programme of European Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3