Accurate Modeling of RNA Hairpins Through the Explicit Treatment of Electronic Polarizability with the Classical Drude Oscillator Force Field

Author:

Sengul Mert Y.1,MacKerell Alexander D.1

Affiliation:

1. Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA

Abstract

Molecular dynamics (MD) simulations play a crucial role in modeling biomolecular systems in which the electrostatic interactions are critical in dictating the structural and dynamical properties. Thus, the treatment of the electrostatic interactions defined in the underlying force field (FF) strongly affects the simulation accuracy. Most FFs use fixed partial atomic charges to include electrostatic interactions, and therefore lack the electronic polarization response, representing an intrinsic limitation. To address this limitation, polarizable FFs have been developed that treat atomic polarizabilities explicitly. Here we present the application of the all-atom polarizable (Drude) and non-polarizable (CHARMM) nucleic acid FFs in RNA hairpin systems to investigate the impact of polarization on structural properties, dipole moment distributions, and cation interactions. Results show that the presence of polarizability in the FF significantly improves the stabilization of RNA hairpin structure. As expected, the distributions of dipole moments show more fluctuations when simulated using the polarizable FF, with the variation in dipoles contributing to the stabilization of the structures of the loop regions of the RNAs. Contact map analyses between the bases and cations show that the variation of the ion distribution around the entire hairpin is larger for the polarizable FF and the cations occupy the outer hydration shell to a greater extent. The presented results indicate the importance of the explicit treatment of electronic polarizability in molecular simulations of RNA, including in non-canonical regions.

Funder

National Institutes of Health

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3