Affiliation:
1. Department of Physics, Naval Postgraduate School, Monterey, CA 93943, USA
Abstract
An inversion scheme based on time-warping is presented for estimating the attenuation coefficient of a sediment bottom using a single vector sensor, restricted to shallow water and using low-frequency impulsive sources. The attenuation information is extracted from the modal phase difference between pressure and vertical velocity. The method is derived from Pekeris waveguide theoretical equations and the eigen values are obtained using the normal mode model Kraken. Some changes are made to the time-warping process to mitigate the inherent interference between adjacent modes, which improves the phase extraction capabilities. Results are presented for a two-layer, homogeneous environment using the RAM propagation model for depth-dependent sound speed profile simulations. This version of RAM was updated to provide radial and vertical velocities. For additional generality, the technique is evaluated in the presence of white noise.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献