Geoacoustic Inversion with a Single Vector Sensor and Multichannel Dispersion Curves

Author:

Guarino Alexandre L.1ORCID,Smith Kevin B.1,Gemba Kay L.1,Godin Oleg A.1

Affiliation:

1. Naval Postgraduate School, Monterey, CA 93943, USA

Abstract

This paper discusses the value added by using a single vector sensor over a conventional pressure-only hydrophone for geoacoustic inversions. Inversion methods based on genetic algorithms are used to estimate the seabed properties. Synthetic signals of impulsive arrivals first are modeled using KRAKEN and RAM propagation models, each being modified to predict components of the vector field. While KRAKEN is utilized to directly compute dispersion curves, RAM provides full-field results that require the application of time warping to separate the modal arrivals. Combinations of dispersion curves utilizing all vector sensor channels are compared to curves estimated with the pressure-only channel. Within the time warping analysis, both binary masking and band-pass filter masking methods are applied to compare stability of results. The environment modeled for the synthetic analysis and inversion method utilize sound speed profiles measured during the Monterey Bay 2019 at-sea experiment and assume a sediment layer of constant thickness overlying a deeper sub-bottom type. White noise is added to the synthetic data at different signal-to-noise ratios to evaluate the impact of signal excess on the results. A hybrid optimization approach is used to improve the results of the genetic algorithm method. The analysis with synthetic data is consistent with the analysis of broadband, impulsive data collected from the experiment, indicating that the additional information from the vertical velocity channel further improves the geoacoustic parameter estimates.

Funder

Office of Naval Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Infinity-Norm Weighted Low-Order Sparse Iterative DOA Estimation Under Impulsive Noise;2023 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC);2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3