Investigation of Geoacoustic Parameters of Fine-Grained Sediment in the South China Sea Using Sequential Inversion

Author:

Hao Wang12ORCID,Duan Rui12ORCID,Yang Kunde123ORCID

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, P. R. China

2. Key Laboratory of Ocean Acoustics and Sensing (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an 710072, P. R. China

3. Ocean Institute of Northwestern Polytechnical University, Taicang 215400, P. R. China

Abstract

Broadband signals interacting with deep ocean fine-grained sediment are crucial in shaping the acoustic field of the geometric shadow zone. These signals travel through both the seabed reflected path and the refracted path. In this article, a sequential inversion scheme is employed to estimate the geoacoustic parameters in abyssal clay sediments. This inversion is based on seabed reflection loss data at different frequencies, as well as travel time difference data between refractions and reflections obtained from the South China Sea Experiment in 2018. Depth-dependent profiles of geoacoustic parameters are formulated using Bernstein polynomials. The polynomial coefficients and their posterior probability density functions are efficiently estimated using the adaptive simplex simulated annealing method and an approximate variational inference technique known as Variational Bayesian Monte Carlo. This technique demonstrates superior efficiency and comparable accuracy to Markov Chain Monte Carlo sampling. The inversion results indicate that the abyssal clay sediments in this area exhibit a positive sound speed gradient and relatively low attenuation, both with high probabilities. The deduced seabed model accurately predicts the transmission loss, aligning well with the experimental data.

Funder

National Natural Science Foundation of China

Open Fund for Key Laboratory of Underwater Acoustic Countermeasure Technology, China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3