Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
Abstract
A high-order large eddy simulation (LES) code based on the flux reconstruction (FR) scheme is further developed for supersonic jet simulation. The FR scheme provides an efficient and easy-to-implement way to achieve high-order accuracy on an unstructured mesh. The order of accuracy and the shock capturing capability of the solver are validated with the isentropic Euler vortex and Sod’s shock tube problem. A heated under-expanded supersonic jet case from NASA’s Small Hot Jet Acoustic Rig (SHJAR) database is used for validation. The turbulence statistics along the nozzle centerline and lip-line are examined. We predict the acoustic radiation with the Ffowcs Williams and Hawkings method, which is integrated with our solver. The far-field acoustic predictions show reasonable agreement with the experimental measurement in the upstream and downstream directions, where the shock-associated noise and the large-scale turbulent mixing noise are dominant, respectively.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献