Sound generated by instability waves of supersonic flows. Part 2. Axisymmetric jets

Author:

Tam Christopher K. W.,Burton Dale E.

Abstract

A solution describing the spatial evolution of small-amplitude instability waves and their associated sound field of axisymmetric supersonic jets is found using the method of matched asymptotic expansions (see Part 1, Tam & Burton 1984). The inherent axisymmetry of the problem allows the instability waves to be decomposed into azimuthal wave modes. In addition, it is found that because of the cylindrical geometry of the problem the gauge functions of the inner expansion, unlike the case of two-dimensional mixing layers, are no longer just powers of ε. Instead they contain logarithmic terms. To test the validity of the theory, numerical results of the solution are compared with the experimental measurements of Troutt (1978) and Troutt & McLaughlin (1982). Two series of comparisons at Strouhal numbers 0.2 and 0.4 for a Mach-number 2.1 cold supersonic jet are made. The data compared include hot-wire measurements of the axial distribution of root-mean-squared jet centreline mass-velocity fluctuations and radial and axial distributions of near-field pressure-level contours measured by microphones. The former is used to test the accuracy of the inner (or instability-wave) solution. The latter is used to verify the correctness of the outer solution. Very favourable overall agreements between the calculated results and the experimental measurements are found. These very favourable agreements strongly suggest that the method of solution developed in Part 1 paper is indeed valid. Furthermore, they also offer concrete support to the proposition made previously by a number of investigators that instability waves are important noise sources in supersonic jets.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference18 articles.

1. Tam, C. K. W. 1971 Directional acoustic radiation from a supersonic jet generated by shear layer instability J. Fluid Mech. 46,757–768.

2. Tam, C. K. W. & Morris, P. J. 1980 The radiation of sound by the instability waves of a compressible plane turbulent shear layer J. Fluid Mech. 98,349–381.

3. Brigham, E. O. 1974 The Fast Fourier Transform .Prentice-Hall.

4. Dingle, R. B. 1973 Asymptotic Expansions: Their Derivation and Interpretation .Academic.

5. Chan, Y. Y. & Westley, R. 1973 Directional acoustic radiation generated by spatial jet instability Can. Aero. and Space Inst. Trans. 6,36–41.

Cited by 320 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3