Two-point radiation statistics from large-scale turbulent structures within supersonic jets

Author:

Cheng Jianhui1ORCID,Goldschmidt James D1,Shen Weiqi1,Ukeiley Lawrence1,Miller Steven AE1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Florida, Florida, USA

Abstract

The noise from large-scale coherent turbulent structures within jets remains the dominant source. For the purpose of developing future control systems for the large-scale noise source, we investigate the statistics between upstream and downstream radiating waves. We investigate two off-design supersonic jet flows with instability theory and associated noise radiation, large-eddy simulation (LES), and experiments. We compare the auto-correlation, cross-correlation, coherence, and other statistics predicted by aeroacoustic instability theory. As instability waves are closely connected with the formation of large-scale turbulent structures, they yield insight into large-scale noise statistics. We investigate two nozzles at two supersonic off-design conditions. The first is a biconic nozzle operating at an unheated condition, and the second is a NASA nozzle operating at a heated condition. We find that for these jets, the noise from instability waves is coherent between 0.40 to 0.70 at large-scale radiation frequencies between the downstream and upstream radiation directions.

Funder

Strategic Environmental Research and Development Program

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3