TIGRNCRN: Trustful inference of gene regulatory network using clustering and refining the network

Author:

Pirgazi Jamshid1,Khanteymoori Ali Reza12,Jalilkhani Maryam1

Affiliation:

1. Department of Computer Engineering, Engineering Faculty, University of Zanjan, Zanjan, Iran

2. School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract

In this study, in order to deal with the noise and uncertainty in gene expression data, learning networks, especially Bayesian networks, that have the ability to use prior knowledge, were used to infer gene regulatory network. Learning networks are methods that have the structure of the network and a learning process to obtain relationships. One of the methods which have been used for measuring the relationship between genes is the correlation metrics, but the high correlated genes not necessarily mean that they have causal effect on each other. Studies on common methods in inference of gene regulatory networks are yet to pay attention to their biological importance and as such, predictions by these methods are less accurate in terms of biological significance. Hence, in the proposed method, genes with high correlation were identified in one cluster using clustering, and the existence of edge between the genes in the cluster was prevented. Finally, after the Bayesian network modeling, based on knowledge gained from clustering, the refining phase and improving regulatory interactions using biological correlation were done. In order to show the efficiency, the proposed method has been compared with several common methods in this area including GENIE3 and BMALR. The results of the evaluation indicate that the proposed method recognized regulatory relations in Bayesian modeling process well, due to using of biological knowledge which is hidden in the data collection, and is able to recognize gene regulatory networks align with important methods in this field.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3