EnGRNT: Inference of gene regulatory networks using ensemble methods and topological feature extraction

Author:

Khojasteh Hakimeh,Olyaee Mohammad Hossein,Khanteymoori AlirezaORCID

Abstract

AbstractThe development of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many machine learning methods have been developed, including supervised, unsupervised, and semi-supervised to infer gene regulatory networks. Most of these methods ignore the class imbalance problem which can lead to decreasing the accuracy of predicting regulatory interactions in the network. Therefore, developing an effective method considering imbalanced data is a challenging task. In this paper, we propose EnGRNT approach to infer GRNs with high accuracy that uses ensemble-based methods. The proposed approach, as well as the gene expression data, considers the topological features of GRN. We applied our approach to the simulated Escherichia coli dataset. Experimental results demonstrate that the appropriateness of the inference method relies on the size and type of expression profiles in microarray data. Except for multifactorial experimental conditions, the proposed approach outperforms unsupervised methods. The obtained results recommend the application of EnGRNT on the imbalanced datasets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3