KFGRNI: A robust method to inference gene regulatory network from time-course gene data based on ensemble Kalman filter

Author:

Pirgazi Jamshid1,Olyaee Mohammad Hossein2,Khanteymoori Alireza34

Affiliation:

1. Department of Electrical and Computer Engineering, University of Science and Technology of Mazandaran Behshahr, Iran

2. Department of Computer Engineering, Engineering Faculty, University of Gonabad, Gonabad, Iran

3. Bioinformatics Group, Department of Computer Science, University of Freiburg, Germany

4. Department of Computer Engineering, Engineering Faculty, University of Zanjan Zanjan Province, Iran

Abstract

A central problem of systems biology is the reconstruction of Gene Regulatory Networks (GRNs) by the use of time series data. Although many attempts have been made to design an efficient method for GRN inference, providing a best solution is still a challenging task. Existing noise, low number of samples, and high number of nodes are the main reasons causing poor performance of existing methods. The present study applies the ensemble Kalman filter algorithm to model a GRN from gene time series data. The inference of a GRN is decomposed with p genes into p subproblems. In each subproblem, the ensemble Kalman filter algorithm identifies the weight of interactions for each target gene. With the use of the ensemble Kalman filter, the expression pattern of the target gene is predicted from the expression patterns of all the remaining genes. The proposed method is compared with several well-known approaches. The results of the evaluation indicate that the proposed method improves inference accuracy and demonstrates better regulatory relations with noisy data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3