Prediction of kinase–substrate relations based on heterogeneous networks

Author:

Li Haichun1,Wang Minghui12,Xu Xiaoyi1

Affiliation:

1. School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, P. R. China

2. Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, P. R. China

Abstract

Protein phosphorylation catalyzed by kinases plays essential roles in various intracellular processes. With an increasing number of phosphorylation sites verified experimentally by high-throughput technologies and assigned as substrates of specific kinases, prediction of potential kinase–substrate relations (KSRs) attracts increasing attention. Although a large number of computational methods have been designed, most of them only focus on local protein sequence information. A few KSR prediction approaches integrate protein–protein interaction and protein sequence information into existing machine learning algorithms at the cost of high feature dimensions or reduced sensitivity. In this work, we introduce two novel heterogeneous networks, HetNet-PPI and HetNet-SEQ, by incorporating PPI and similarity of protein sequences into the kinase–substrate heterogeneous networks, respectively. Based on these two heterogeneous networks, we further propose two new KSR prediction methods, HeteSim-PPI and HeteSim-SEQ, by adopting the HeteSim algorithm, which is recently proposed for relevance measure in heterogeneous information networks. Comprehensive evaluation results of the two methods show that similarity of protein sequences is more effective in improving KSR prediction performance as HeteSim-SEQ outperforms HeteSim-PPI in most cases. Further comparison results demonstrate that HeteSim-SEQ is superior to existing methods including BDT, SVM and iGPS, suggesting the effectiveness of the proposed network-based method in predicting potential KSRs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3