KSP: an integrated method for predicting catalyzing kinases of phosphorylation sites in proteins

Author:

Ma Hongli,Li Guojun,Su Zhengchang

Abstract

Abstract Background Protein phosphorylation by kinases plays crucial roles in various biological processes including signal transduction and tumorigenesis, thus a better understanding of protein phosphorylation events in cells is fundamental for studying protein functions and designing drugs to treat diseases caused by the malfunction of phosphorylation. Although a large number of phosphorylation sites in proteins have been identified using high-throughput phosphoproteomic technologies, their specific catalyzing kinases remain largely unknown. Therefore, computational methods are urgently needed to predict the kinases that catalyze the phosphorylation of these sites. Results We developed KSP, a new algorithm for predicting catalyzing kinases for experimentally identified phosphorylation sites in human proteins. KSP constructs a network based on known protein-protein interactions and kinase-substrate relationships. Based on the network, it computes an affinity score between a phosphorylation site and kinases, and returns the top-ranked kinases of the score as candidate catalyzing kinases. When tested on known kinase-substrate pairs, KSP outperforms existing methods including NetworKIN, iGPS, and PKIS. Conclusions We developed a novel accurate tool for predicting catalyzing kinases of known phosphorylation sites. It can work as a complementary network approach for sequence-based phosphorylation site predictors.

Funder

Key Programme

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3