Affiliation:
1. Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang 330031, China
Abstract
Abstract
With the development of biotechnology, a large number of phosphorylation sites have been experimentally confirmed and collected, but only a few of them have kinase annotations. Since experimental methods to detect kinases at specific phosphorylation sites are expensive and accidental, some computational methods have been proposed to predict the kinase of these sites, but most methods only consider single sequence information or single functional network information. In this study, a new method Predicting Kinase of Specific Phosphorylation Sites (PKSPS) is developed to predict kinases of specific phosphorylation sites in human proteins by combining PKSPS-Net with PKSPS-Seq, which considers protein–protein interaction (PPI) network information and sequence information. For PKSPS-Net, kinase–kinase and substrate–substrate similarity are quantified based on the topological similarity of proteins in the PPI network, and maximum weighted bipartite matching algorithm is proposed to predict kinase–substrate relationship. In PKSPS-Seq, phosphorylation sequence enrichment analysis is used to analyze the similarity of local sequences around phosphorylation sites and predict the kinase of specific phosphorylation sites (KSP). PKSPS has been proved to be more effective than the PKSPS-Net or PKSPS-Seq on different sets of kinases. Further comparison results show that the PKSPS method performs better than existing methods. Finally, the case study demonstrates the effectiveness of the PKSPS in predicting kinases of specific phosphorylation sites. The open source code and data of the PKSPS can be obtained from https://github.com/guoxinyunncu/PKSPS.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献