PKSPS: a novel method for predicting kinase of specific phosphorylation sites based on maximum weighted bipartite matching algorithm and phosphorylation sequence enrichment analysis

Author:

Guo Xinyun1,He Huan1,Yu Jialin1,Shi Shaoping1ORCID

Affiliation:

1. Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang 330031, China

Abstract

Abstract With the development of biotechnology, a large number of phosphorylation sites have been experimentally confirmed and collected, but only a few of them have kinase annotations. Since experimental methods to detect kinases at specific phosphorylation sites are expensive and accidental, some computational methods have been proposed to predict the kinase of these sites, but most methods only consider single sequence information or single functional network information. In this study, a new method Predicting Kinase of Specific Phosphorylation Sites (PKSPS) is developed to predict kinases of specific phosphorylation sites in human proteins by combining PKSPS-Net with PKSPS-Seq, which considers protein–protein interaction (PPI) network information and sequence information. For PKSPS-Net, kinase–kinase and substrate–substrate similarity are quantified based on the topological similarity of proteins in the PPI network, and maximum weighted bipartite matching algorithm is proposed to predict kinase–substrate relationship. In PKSPS-Seq, phosphorylation sequence enrichment analysis is used to analyze the similarity of local sequences around phosphorylation sites and predict the kinase of specific phosphorylation sites (KSP). PKSPS has been proved to be more effective than the PKSPS-Net or PKSPS-Seq on different sets of kinases. Further comparison results show that the PKSPS method performs better than existing methods. Finally, the case study demonstrates the effectiveness of the PKSPS in predicting kinases of specific phosphorylation sites. The open source code and data of the PKSPS can be obtained from https://github.com/guoxinyunncu/PKSPS.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3