ALLOY FORMATION OF ULTRATHIN Ni FILMS ON Al(111) SURFACE AT ROOM TEMPERATURE

Author:

KIM Y. W.1,WHITE G. A.1,REIBEL R.1,SMITH R. J.1

Affiliation:

1. Department of Physics, Montana State University, Bozeman, Montana 59717, USA

Abstract

The growth characteristics of ultrathin Ni films deposited on Al(111) surfaces at room temperature have been studied using high energy ion scattering/channeling (HEIS), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Ion channeling results show that Ni atoms deposited on the Al(111) surface react with Al substrate atoms to form two different Ni–Al alloys between 0 and 5.5 ML of Ni coverage. Alloy phases of Ni 2 Al 3 up to 1.5 ML and NiAl up to 5.5 ML were determined by XPS peak analysis. At higher Ni coverage, LEIS and XPS spectra suggest that islands of Ni metal were formed on the surface. Diffusion of Ni into the Al substrate or segregation of Al to the surface was observed during the alloy formation. The Ni 2 Al 3 phase was apparently transformed into the NiAl phase by the additional Ni deposition, and the islands of Ni metal formed on the Al-rich surface of the NiAl alloy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on the phase transformation of electroless Ni–B coating after dry sliding against alumina ball;Journal of Alloys and Compounds;2016-02

2. Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2001-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3