A thermodynamic and kinetic basis for understanding metastable phase formation during ion-beam mixing of nickel-aluminum alloys

Author:

Eridon James,Was Gary S.,Rehn Lynn

Abstract

A quantitative thermodynamic explanation for the formation of metastable phases in the nickel-aluminum alloy system through heavy-ion irradiation is presented. The role of kinetics in the transformation to a metastable state is also investigated. Experiments involved the irradiation of both layered nickel-aluminum samples and ordered intermetallic compounds with 500 keV krypton ions over a range of temperatures and compositions. Samples were formed by alternate evaporation of layers of nickel and aluminum. A portion of these samples was subsequently annealed to form intermetallic compounds. Irradiations were performed at both room temperature and 80 K using the 2 MV ion accelerator at Argonne National Laboratory. Phase transformations were observed during both in situ irradiations in the high-voltage electron microscope at Argonne and also in subsequent electron diffraction analyses of an array of irradiated samples. Metastable phases formed included disordered crystalline structures, an amorphous structure, and a hexagonal-close-packed structure. These phase structures were modeled using the embedded atom method to compute heats of transformation ΔHs–ms from stable to metastablestates. It was found that metastable states that have moderate heats of transformation, ΔHs–ms ≍ 15%–20% of the heat of formation of the stable phase, form under irradiation. Metastable states with high heats of transformation, ΔHs–ms ≍ 50% of the heat of formation of the stable phase, do not form under irradiation. Kinetics also play an important role in determining the effect of temperature and initial structure on the formation of metastable phases.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3