The structure and dynamics of granular complex networks deriving from financial time series

Author:

Tingting Li1,Chao Luo12,Rui Shao13

Affiliation:

1. School of Information Science and Engineering, Shandong Normal University, Jinan 250014, P. R. China

2. Shandong Provincial Key Laboratory for Novel, Distributed Computer Software Technology, Jinan 250014, P. R. China

3. China Mobile Shandong Co., Ltd, Jinan 250014, P. R. China

Abstract

High noise and strong volatility are the typical characteristics of financial time series. Combined with pseudo-randomness, nonsteady and self-similarity exhibiting in different time scales, it is a challenging issue for the pattern analysis of financial time series. Different from the existing works, in this paper, financial time series are converted into granular complex networks, based on which the structure and dynamics of network models are revealed. By using variable-length division, an extended polar fuzzy information granule (FIGs) method is used to construct granular complex networks from financial time series. Considering the temporal characteristics of sequential data, static networks and temporal networks are studied, respectively. As to the static network model, some features of topological structures of granular complex networks, such as distribution, clustering and betweenness centrality are discussed. Besides, by using the Markov chain model, the transfer processes among different granules are investigated, where the fluctuation pattern of data in the coming step can be evaluated from the transfer probability of two consecutive granules. Shanghai composite index and foreign exchange data as two examples in real life are applied to carry out the related discussion.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3