Risk Early Warning Evaluation of Coal Mine Water Inrush Based on Complex Network and Its Application

Author:

Li Yanhui12ORCID,Bai Jianbiao23ORCID,Yan Wei4ORCID,Wang Xiangyu12ORCID,Wu Bowen12ORCID,Liu Shuaigang12ORCID,Xu Jun5,Sun Jiaxin6

Affiliation:

1. School of Mines, China University of Mining & Technology, Xuzhou 221116, China

2. State Key Laboratory of Coal Resources and Safe Mining, Xuzhou 221116, China

3. College of Mining Engineering and Geology, Xinjiang Institute of Engineering, Urumqi 830023, China

4. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

5. School of Science, Yangzhou Polytechnic Institute, Yangzhou 225127, China

6. Xuzhou Construction Machinery Co.,Ltd, Xuzhou 221000, China

Abstract

As one of the five major coal mine disasters, the water inrush disaster poses a serious threat to the safety of the country and people, so the prevention work for that becomes very important. However, there is no perfect assessment system that can better solve the complex dependence relationships among disaster-causing factors of water inrush disasters. This study applied the knowledge of Complex Networks to research water inrush disaster, and based on that, the early warning evaluation system that combined ANP and Cloud model was established in order to solve the complex dependence problem and prevent the occurrence of water inrush. Moreover, this evaluation model was applied to the example Y coal mine to verify its superiority and feasibility. The results showed that the main cloud of goal was located at the yellow-strong warning level, and the first-level indicators were, respectively, at that the yellow-strong level of mining conditions, the yellow-strong warning level of hydrological factors, between the yellow-strong warning level and purple-general level of the geological structure, and among the blue-slightly weak warning level, purple-general level, and yellow-strong level of the human factor. The prediction results were consistent with the actual situation of the coal water inrush disaster in Y mine, which further proved that this early warning evaluation model is reliable. In response to the forecast results, the authors put forward relative improvements necessary to strengthen the prevention ability to disaster-causing factors among hydrological factors, mining conditions, and geological structure, which should comprehensively increase knowledge, technology, and management of workers to avoid leaving out disaster-causing factors. Meanwhile, the warning evaluation model also provides the relevant experience basis for other types of early warning assessment networks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3