Numerical simulation of motion characteristics of flexible fresh tea leaf in Poiseuille shear flow via combined immersed boundary–lattice Boltzmann method

Author:

Wang Rongyang12,Wei Yikun1,Wu Chuanyu1,Sun Liang1,Zheng Wenguang1

Affiliation:

1. Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

2. College of Mechanical and Electrical Engineering, Huzhou Vocational and Technical College, Huzhou 313000, P. R. China

Abstract

In this study, the deformations and trajectories of elastic fresh tea leaf in a simple straight channel model are investigated using the combined immersed boundary–lattice Boltzmann method (IB–LBM). The objective is to qualitatively analyze the effects of gravity, diameter and the Reynolds number (Re) on the physical characteristics of flexible fresh tea leaf, which is driven by Poiseuille airflow in a channel model. The LBM is used to simulate the fluid domain with regular Eulerian grid, while the IB method is employed to model the fluid–membrane interaction, with a set of Lagrangian moving grids being adopted for the fresh tea leaf. Our results mainly reveal that a tea leaf undergoes deformation due to the shearing effect of the Poiseuille flow, resulting in lifting of the leaf toward the channel center. Under the influence of gravity, the leaf performs a tumbling motion with clockwise rotation and preserves an oscillating stable state. Furthermore, the diameter has a far greater influence on the dimensionless shape parameters than Re. For a leaf of a certain size and position, a series of relations between [Formula: see text] and Re are established at various ratios of fresh leaves by least square method. Based on the above findings, such studies provide useful data and insights to obtain high-quality green tea by selecting mechanical-plucked fresh tea leaves according to shape consistency.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3