ELASTIC BEHAVIOR OF OXYGEN CONTROLLED MELT GROWTH PROCESSED NEG-123 HTSC MATERIALS

Author:

NEELESHWAR S.1,MURALIDHAR M.2,MURAKAMI M.2,VENUGOPAL REDDY P.1

Affiliation:

1. Department of Physics, Osmania University, Hyderabad – 500 007, India

2. Superconductivity Research Laboratory (SRL), ISTEC, 1-16-25, Shibaura, Minato-Ku, Tokyo 105, Japan

Abstract

A series of superconducting materials having compositional formula, ( Nd - Eu - Gd )- Ba - Cu - O (123) + x%( Nd - Eu - Gd ) Ba - Cu - O (211) or NEG-123 + NEG-211 (where x ranges from 0–50%) were prepared by the Oxygen Controlled Melt Growth (OCMG) process. After characterizing the materials by studying their microstructure, measuring Jc and Tc values, the ultrasonic longitudinal velocity (Vl) measurements were carried out both as a function of composition (x% of 211 phase) as well as the temperature, over a temperature range 80–300 K. It has been found that the variation of ultrasonic longitudinal velocity is similar to that of Jc with increasing x values (concentration of NEG-211). These results indicate that by dispersing 40% fine NEG-211 particles in the superconducting matrix of NEG-123, both the critical current densities as well as the ultrasonic velocity values are found to exhibit highest values. It is known that the lattice defects of ceramic superconductors are manifested in the form of elastic anomalies, especially in the normal temperature region (100–250 K). In order to understand the complete scenario of elastic anomalies of HTSC materials, a systematic investigation of the ultrasonic velocities of HTSC materials prepared by the OCMG technique has been undertaken and using the results an attempt has been made to generalize the scenario of the elastic anomalies in HTSC materials.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3