Optimization-based Model Predictive Tube Control for Autonomous Ground Vehicles with Minimal Tuning Parameters

Author:

Kovacs Adorjan1,Vajk Istvan1

Affiliation:

1. Department of Automation and Applied Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Megyetem rkp. 3, H-1111 Budapest, Hungary

Abstract

The trajectory planning and tracking problem are critical points of intelligent vehicles concerning their safety and stability. If these parts are separated, interactions should be made between them, especially when sudden changes and disturbances appear. This paper presents a method that integrates the two parts using a cascade structure. Additionally, the proposed method deals with the interaction between the lateral and the longitudinal trajectory based on dynamical considerations. The whole problem is handled using the model predictive method based on online optimization. This system receives the path borders as input and generates the control requests for the actuators on its output. The configuration space of the system can be maximized to gain stability by handling the lateral-longitudinal parts and the trajectory planning and tracking in one complex system. The main advantage of the proposed approach is that the optimization problem in the predictive method is formulated so that the path and dynamics are considered equality and inequality constraints, and the cost function includes only a physical phenomenon to be minimized without tuning parameters. The evaluation of the proposed algorithm is presented in this paper based on simulation and real-time measurements results.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and simulation of intelligent vehicle lane change path tracking controller;Fourth International Conference on Computer Science and Communication Technology (ICCSCT 2023);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3