Swift Path Planning: Vehicle Localization by Visual Odometry Trajectory Tracking and Mapping

Author:

Awang Salleh Dayang Nur Salmi Dharmiza1ORCID,Seignez Emmanuel1

Affiliation:

1. SATIE, Universite Paris-Sud, 91400 Orsay, France

Abstract

Accurate localization is the key component in intelligent vehicles for navigation. With the rapid development especially in urban area, the increasing high-rise buildings results in urban canyon and road network has become more complex. These affect the vehicle navigation performance particularly in the event of poor Global Positioning System (GPS) signal. Therefore, it is essential to develop a perceptive localization system to overcome this problem. This paper proposes a localization approach that exhibits the advantages of Visual Odometry (VO) in low-cost data fusion to reduce vehicle localization error and improve its response rate in path selection. The data used are sourced from camera as visual sensor, low-cost GPS and free digital map from OpenStreetMap. These data are fused by Particle filter (PF) where our method estimates the curvature similarity score of VO trajectory curve with candidate ways extracted from the map. We evaluate the robustness of our proposed approach with three types of GPS errors such as random noise, biased noise and GPS signal loss in an instance of ambiguous road decision. Our results show that this method is able to detect and select the correct path simultaneously which contributes to a swift path planning.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Multi-Modal Scale-Aware Attentions for Efficient and Robust Road Segmentation;Unmanned Systems;2023-12-07

2. IDSSL: Intent Detection Module Based on Self-Supervised Learning for Trajectory Prediction;Unmanned Systems;2023-11-23

3. Real-Time Localization and Mapping Algorithm of Unmanned Vehicle Based on Sensor Data Fusion and SLAM Technology;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

4. Evaluation of a novel DSO-based Indoor Ceiling-Vision Odometry System;2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV);2022-12-11

5. A target tracking system based on multi-camera information fusion;2022 China Automation Congress (CAC);2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3