Affiliation:
1. SATIE, Universite Paris-Sud, 91400 Orsay, France
Abstract
Accurate localization is the key component in intelligent vehicles for navigation. With the rapid development especially in urban area, the increasing high-rise buildings results in urban canyon and road network has become more complex. These affect the vehicle navigation performance particularly in the event of poor Global Positioning System (GPS) signal. Therefore, it is essential to develop a perceptive localization system to overcome this problem. This paper proposes a localization approach that exhibits the advantages of Visual Odometry (VO) in low-cost data fusion to reduce vehicle localization error and improve its response rate in path selection. The data used are sourced from camera as visual sensor, low-cost GPS and free digital map from OpenStreetMap. These data are fused by Particle filter (PF) where our method estimates the curvature similarity score of VO trajectory curve with candidate ways extracted from the map. We evaluate the robustness of our proposed approach with three types of GPS errors such as random noise, biased noise and GPS signal loss in an instance of ambiguous road decision. Our results show that this method is able to detect and select the correct path simultaneously which contributes to a swift path planning.
Publisher
World Scientific Pub Co Pte Lt
Subject
Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献