An Extended Membrane System with Active Membranes to Solve Automatic Fuzzy Clustering Problems

Author:

Peng Hong1,Wang Jun2,Shi Peng345,Pérez-Jiménez Mario J.6,Riscos-Núñez Agustín6

Affiliation:

1. Center for Radio Administration and Technology Development, School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China

2. School of Electrical and Electronic Information Engineering, Xihua University, Chengdu 610039, P. R. China

3. College of Automation, Harbin Engineering University, Harbin 150001, P. R. China

4. College of Engineering and Science, Victoria University, Melbourne VIC 8001, Australia

5. School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, SA 5005, Australia

6. Research Group of Natural Computing, Department of Computer Science and Artificial Intelligence, University of Seville, Sevilla 41012, Spain

Abstract

This paper focuses on automatic fuzzy clustering problem and proposes a novel automatic fuzzy clustering method that employs an extended membrane system with active membranes that has been designed as its computing framework. The extended membrane system has a dynamic membrane structure; since membranes can evolve, it is particularly suitable for processing the automatic fuzzy clustering problem. A modification of a differential evolution (DE) mechanism was developed as evolution rules for objects according to membrane structure and object communication mechanisms. Under the control of both the object’s evolution-communication mechanism and the membrane evolution mechanism, the extended membrane system can effectively determine the most appropriate number of clusters as well as the corresponding optimal cluster centers. The proposed method was evaluated over 13 benchmark problems and was compared with four state-of-the-art automatic clustering methods, two recently developed clustering methods and six classification techniques. The comparison results demonstrate the superiority of the proposed method in terms of effectiveness and robustness.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3