A GENETIC GRAPH-BASED APPROACH FOR PARTITIONAL CLUSTERING

Author:

MENÉNDEZ HÉCTOR D.1,BARRERO DAVID F.2,CAMACHO DAVID1

Affiliation:

1. Computer Science Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain

2. Departamento de Automática, Universidad de Alcalá, 28801, Alcalá de Henares, Madrid, Spain

Abstract

Clustering is one of the most versatile tools for data analysis. In the recent years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the spectral clustering (SC) algorithm, which is based on graph cut: It initially generates a similarity graph using a distance measure and then studies its graph spectrum to find the best cut. This approach is sensitive to the parameters of the metric, and a correct parameter choice is critical to the quality of the cluster. This work proposes a new algorithm, inspired by SC, that reduces the parameter dependency while maintaining the quality of the solution. The new algorithm, named genetic graph-based clustering (GGC), takes an evolutionary approach introducing a genetic algorithm (GA) to cluster the similarity graph. The experimental validation shows that GGC increases robustness of SC and has competitive performance in comparison with classical clustering methods, at least, in the synthetic and real dataset used in the experiments.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Reference64 articles.

1. Unsupervised Learning: Clustering

2. A tutorial on spectral clustering

3. A. Ng, M. Jordan and Y. Weiss, Advances in Neural Information Processing Systems, eds. T. Dietterich, S. Becker and Z. Ghahramani (MIT Press, 2001) pp. 849–856.

4. Robust path-based spectral clustering

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetic algorithm based approach to solve the Clustered Steiner Tree Problem;Evolutionary Intelligence;2023-04-19

2. Spectral Clustering Based on Relation-Invariable Persistent Formation;2021 7th International Conference on Control, Automation and Robotics (ICCAR);2021-04-23

3. Designing large quantum key distribution networks via medoid-based algorithms;Future Generation Computer Systems;2021-02

4. Genetic Programming for Evolving Similarity Functions for Clustering: Representations and Analysis;Evolutionary Computation;2020-12

5. Accelerated Two-Stage Particle Swarm Optimization for Clustering Not-Well-Separated Data;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3