An improved clustering method using particle swarm optimization algorithm and mitochondrial fusion model (PSO-MFM)

Author:

Nasef Mohammed M.1,El Kafrawy Passent M.12,Hashim Amal13

Affiliation:

1. Mathematics and Computer Science Department Faculty of Science, Menoufia University, Shebin El-Koom, Egypt

2. School of Information Technology and Computer Science, Nile University, Egypt

3. Information Systems Department Higher Institute of Advanced Studies, Haram, Giza, Egypt

Abstract

Computational models are foundational concepts in computer science; many of these models such as P systems are based on natural biological processes. P systems represent a wide framework for a variety of concepts of data mining, as models of data clustering approaches. Data clustering is a technique for analyzing data based on its structure that is widely utilized for many applications. In this paper, the proposed model (PSO-MFM) has combined the Particle Swarm Optimization algorithm (PSO) with Mitochondrial Fusion Model to overcome some constraints of clustering techniques. The solving of clustering problem based on particle swarm is investigated in the proposed model when mutual dynamic rules are used. It can find the best cluster centers for a data set and improve clustering performance by utilizing the distributed parallel computing concept of mutual dynamic rules of mitochondrial fusion model. The comparative results demonstrate that the proposed strategy outperforms competition models when it comes to clustering accuracy, stability and the most efficient in time complexity.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3