Performing Multi-Target Regression via a Parameter Sharing-Based Deep Network

Author:

Reyes Oscar12,Ventura Sebastián132

Affiliation:

1. Department of Computer Science and Numerical Analysis, University of Córdoba Rabanales Campus, 14071 Córdoba, Spain

2. Knowledge Discovery and Intelligent Systems in Biomedicine Laboratory, Maimónides Biomedical Research Institute of Córdoba, 14004 Córdoba, Spain

3. Department of Information Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Multi-target regression (MTR) comprises the prediction of multiple continuous target variables from a common set of input variables. There are two major challenges when addressing the MTR problem: the exploration of the inter-target dependencies and the modeling of complex input–output relationships. This paper proposes a neural network model that is able to simultaneously address these two challenges in a flexible way. A deep architecture well suited for learning multiple continuous outputs is designed, providing some flexibility to model the inter-target relationships by sharing network parameters as well as the possibility to exploit target-specific patterns by learning a set of nonshared parameters for each target. The effectiveness of the proposal is analyzed through an extensive experimental study on 18 datasets, demonstrating the benefits of using a shared representation that exploits the commonalities between target variables. According to the experimental results, the proposed model is competitive with respect to the state-of-the-art in MTR.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3