NeuralCMS: A deep learning approach to study Jupiter’s interior

Author:

Ziv M.ORCID,Galanti E.ORCID,Sheffer A.,Howard S.ORCID,Guillot T.ORCID,Kaspi Y.ORCID

Abstract

Context. NASA’s Juno mission provided exquisite measurements of Jupiter’s gravity field that together with the Galileo entry probe atmospheric measurements constrains the interior structure of the giant planet. Inferring its interior structure range remains a challenging inverse problem requiring a computationally intensive search of combinations of various planetary properties, such as the cloud-level temperature, composition, and core features, requiring the computation of ∼109 interior models. Aims. We propose an efficient deep neural network (DNN) model to generate high-precision wide-ranged interior models based on the very accurate but computationally demanding concentric MacLaurin spheroid (CMS) method. Methods. We trained a sharing-based DNN with a large set of CMS results for a four-layer interior model of Jupiter, including a dilute core, to accurately predict the gravity moments and mass, given a combination of interior features. We evaluated the performance of the trained DNN (NeuralCMS) to inspect its predictive limitations. Results. NeuralCMS shows very good performance in predicting the gravity moments, with errors comparable with the uncertainty due to differential rotation, and a very accurate mass prediction. This allowed us to perform a broad parameter space search by computing only ∼104 actual CMS interior models, resulting in a large sample of plausible interior structures, and reducing the computation time by a factor of 105. Moreover, we used a DNN explainability algorithm to analyze the impact of the parameters setting the interior model on the predicted observables, providing information on their nonlinear relation.

Funder

Israel Space Agency

Helen Kimmel Center for Planetary Sciences, Weizmann Institute of Science

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3