APPLICATION OF NON-LINEAR AND WAVELET BASED FEATURES FOR THE AUTOMATED IDENTIFICATION OF EPILEPTIC EEG SIGNALS

Author:

ACHARYA U. RAJENDRA1,SREE S. VINITHA2,ANG PENG CHUAN ALVIN1,YANTI RATNA1,SURI JASJIT S.34

Affiliation:

1. Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore

2. Global Biomedical Technologies, Inc., CA, USA

3. CTO, Global Biomedical Technologies, CA, USA

4. Biomedical Engineering Department, Idaho State University (affl.), ID, USA

Abstract

Epilepsy, a neurological disorder, is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals, which are used to detect the presence of seizures, are non-linear and dynamic in nature. Visual inspection of the EEG signals for detection of normal, interictal, and ictal activities is a strenuous and time-consuming task due to the huge volumes of EEG segments that have to be studied. Therefore, non-linear methods are being widely used to study EEG signals for the automatic monitoring of epileptic activities. The aim of our work is to develop a Computer Aided Diagnostic (CAD) technique with minimal pre-processing steps that can classify all the three classes of EEG segments, namely normal, interictal, and ictal, using a small number of highly discriminating non-linear features in simple classifiers. To evaluate the technique, segments of normal, interictal, and ictal EEG segments (100 segments in each class) were used. Non-linear features based on the Higher Order Spectra (HOS), two entropies, namely the Approximation Entropy (ApEn) and the Sample Entropy (SampEn), and Fractal Dimension and Hurst Exponent were extracted from the segments. Significant features were selected using the ANOVA test. After evaluating the performance of six classifiers (Decision Tree, Fuzzy Sugeno Classifier, Gaussian Mixture Model, K-Nearest Neighbor, Support Vector Machine, and Radial Basis Probabilistic Neural Network) using a combination of the selected features, we found that using a set of all the selected six features in the Fuzzy classifier resulted in 99.7% classification accuracy. We have demonstrated that our technique is capable of achieving high accuracy using a small number of features that accurately capture the subtle differences in the three different types of EEG (normal, interictal, and ictal) segments. The technique can be easily written as a software application and used by medical professionals without any extensive training and cost. Such software can evolve into an automatic seizure monitoring application in the near future and can aid the doctors in providing better and timely care for the patients suffering from epilepsy.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 234 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3