AUTOMATIC IDENTIFICATION OF EPILEPTIC EEG SIGNALS USING NONLINEAR PARAMETERS

Author:

ACHARYA U. RAJENDRA1,CHUA CHUA KUANG1,LIM TEIK-CHENG2,DORITHY 1,SURI JASJIT S.345

Affiliation:

1. Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore

2. School of Science and Technology, SIM University, Clementi Road, Singapore

3. Idaho State University, ID, USA

4. Eigen Inc., Grass Valley, CA, USA

5. Biomedical Technologies, CO, USA

Abstract

Epilepsy is a brain disorder causing people to have recurring seizures. Electroencephalogram (EEG) is the electrical activity of the brain signals that can be used to diagnose the epilepsy. The EEG signal is highly nonlinear and nonstationary in nature and may contain indicators of current disease, or warnings about impending diseases. The chaotic measures like correlation dimension (CD), Hurst exponent (H), and approximate entropy (ApEn) can be used to characterize the signal. These features extracted can be used for automatic diagnosis of seizure onsets which would help the patients to take appropriate precautions. These nonlinear features have been reported to be a promising approach to differentiate among normal, pre-ictal (background), and epileptic EEG signals. In this work, these features were used to train both Gaussian mixture model (GMM) and support vector machine (SVM) classifiers. The performance of the two classifiers were evaluated using the receiver operating characteristics (ROC) curves. Our results show that the GMM classifier performed better with average classification efficiency of 95%, sensitivity and specificity of 92.22% and 100%, respectively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3